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Abstract

Probability density functions that include the gamma function are widely used in statistics and

machine learning. The normalizing constants of gamma, inverse gamma, beta, and Dirichlet

distributions all include model parameters as arguments in the gamma function; however, the

gamma function does not naturally admit a conjugate prior distribution in a Bayesian analysis,

and statistical inference of these parameters is a significant challenge. In this paper, we construct

the Pólya-inverse Gamma (P-IG) distribution as an infinite convolution of Generalized inverse

Gaussian (GIG) distributions, and we represent the reciprocal gamma function as a scale mixture

of normal distributions. As a result, the P-IG distribution yields an efficient data augmentation

strategy for fully Bayesian inference on model parameters in gamma, inverse gamma, beta, and

Dirichlet distributions. To illustrate the applied utility of our data augmentation strategy, we

infer the proportion of overdose deaths in the United States attributed to different opioid and

prescription drugs with a Dirichlet allocation model.

Key Words: Pólya inverse Gamma, Pólya Gamma, Exponential reciprocal Gamma, Latent Dirich-

let Allocation, Topic models, Gamma shape, Generalized Gamma Convolutions.
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1 Introduction

Gamma, inverse gamma, beta, and Dirichlet probability distributions are core components of

many Bayesian statistical and machine learning models. The normalizing constants of these dis-

tributions depend on gamma functions whose arguments include shape (gamma, inverse gamma)

and concentration (beta, Dirichlet) parameters. Bayesian learning of parameters nested inside the

gamma function presents significant technical difficulties, since there is no known conjugate prior

distribution. In fact, inferring the shape parameter in the gamma distribution is a long-studied

problem in Bayesian inference (Damsleth, 1975; Rossell et al., 2009; Miller, 2018).

In this paper, we develop the theoretical and algorithmic foundation of a Pólya-inverse Gamma

(P-IG) data augmentation scheme for fully Bayesian inference of shape and concentration param-

eters in gamma, inverse gamma, and Dirichlet models, respectively. P-IG data augmentation may

be utilized to design efficient Markov chain Monte Carlo (MCMC) algorithms in latent Dirichlet al-

location (Blei et al., 2003), Beta-negative binomial models (Zhou et al., 2012), and Gamma-Gamma

(GaGa) hierarchical models (Rossell et al., 2009). It adds to the literature on Bayesian computation

with auxiliary variables, which have proven useful in computing posterior distributions in logis-

tic regression (Polson et al., 2013), multinomial factor models (Holmes and Held, 2006), support

vector machines (Mallick et al., 2005; Polson and Scott, 2011), and dependent multinomial models

(Linderman et al., 2015).

The P-IG distribution is defined as an infinite convolution of Generalized inverse Gaussian

(GIG) distributions and is related to the class of Pólya-Gamma (PG) distributions (Polson et al., 2013)

for logistic regression. The Exponential reciprocal Gamma (E-RG) distribution is a special case of

the P-IG distribution that has direct application to gamma shape inference. Our data-augmentation

scheme builds on distributional results of Hartman (1976) and Roynette and Yor (2005), who pro-

vide a representation of the reciprocal gamma function as a scale mixture of normals. This adds to

scale mixtures results in Bayesian inference, see Andrews and Mallows (1974), Barndorff-Nielsen

et al. (1982), West (1987), and Polson et al. (2013). Scale mixtures of normals are increasingly used

in modeling complex high-dimensional distributions, and Bhattacharya et al. (2016) provide fast

sampling strategies, adding to the practical use of scale mixture distributions in scalable stochastic

simulations. Equivalently constructed scalable PG sampling schemes are provided in Windle et al.

(2014) and Glynn et al. (2019).

To illustrate the applied utility of our data augmentation strategy, we use a multinomial -
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Dirichlet model to estimate the proportion of overdose deaths in the United States attributed to dif-

ferent opioid and prescription drugs. Robust quantification of uncertainty in the number of deaths

attributed to opioids is of great interest to the public health community, and our P-IG approach pro-

vides a full posterior distribution, avoiding approximate EM-style algorithms such as Minka (2000)

or the simulation approach of Miller (2018) and that taken by Rossell et al. (2009) in the class of

GaGa models. We also present an application of gamma shape inference (West, 1992; Miller, 2018).

The rest of our paper is outlined as follows: Section 2 defines the class of P-IG distributions,

relates the P-IG and Pólya-Gamma distributions, and identifies the Exponential reciprocal Gamma

(E-RG) distribution as a special case of the P-IG class; Section 3 constructs data augmentation strate-

gies in hierarchical multinomial-Dirichlet models, developing a parameter expanded Gibbs sampler

for fully Bayesian inference of Dirichlet concentration parameters; Section 4 presents an augmenta-

tion strategy for fully Bayesian inference of the shape parameter in the gamma distribution; Section

5 presents an analysis of the opioid and prescription drug overdose data; and Section 6 concludes

with directions for future research.

2 The Pólya-Inverse Gamma (P-IG) Distribution Class

In this section, we present the theoretical development of the P-IG distribution class, defining

the P-IG distribution by the form of its Laplace transform. In Section 2.1, we define a specific case

of the P-IG distribution and prove that it is an infinite convolution of independent GIG distribu-

tions; in Section 2.2, the general class of Pólya-Inverse Gamma distributions is constructed with an

exponential tilting of the special case defined in Section 2.1; and in Section 2.3 we prove that the Ex-

ponential reciprocal Gamma (E-RG) distribution is a member of the P-IG distribution class, a result

that relates ratios of gamma functions to the P-IG distribution.

2.1 The P-IG(d, 0) distribution

Let P-IG(d, 0) denote the Pólya-inverse Gamma distribution where the infinite-dimension pa-

rameter vector d = (d1, d2, · · · ) > 0 is a sequence of given positive constants. The second parameter,

which is a tilting parameter fixed at zero in this case, will be discussed in greater detail in Section

2.2.

Definition 2.1. Random variable ω has a Pólya-inverse Gamma distribution, P-IG(d, 0), with den-
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sity p(ω | d, 0) if its Laplace transform takes the form

E
[
e−ωt

2
]

=

∫ ∞
0

e−ωt
2
p (ω | d, 0) dω =

∞∏
k=1

(
1 +
|t|
dk

)
e
− |t|
dk . (1)

We write ω D
= P-IG(d, 0).

Remark 1. With dk = k, we have

e−γt

Γ(t+ 1)
=

∫ ∞
0

e−ωt
2
p (ω | d, 0) dω, t > 0

using the Hadamard factorization of the reciprocal Gamma function,

e−γt

Γ(t+ 1)
=
∞∏
k=1

(
1 +

t

k

)
e−

t
k ,

where γ ≈ 0.57721 is the Euler-Mascheroni constant.

Lemma 1. A P-IG(d, 0) random variable can be represented as an infinite convolution of reciprocal

gamma distributions, equivalently expressed as an infinite convolution of GIG distributions,

w|d D
=
∞∑
k=1

RΓ

(
3

2
,

1

4d2
k

)
=
∞∑
k=1

GIG

(
−3

2
,

1√
2dk

, 0

)
. (2)

Proof. Let wk ∼ RΓ(3
2 , βk), where RΓ denotes the reciprocal (or inverse) gamma distribution. It has

density

fwk(y) =
β

3
2
k

Γ(3
2)
y−

5
2 e−βky

−1
, (y > 0),

where βk = 1/4d2
k, so that

E(e−t
2wk) =

∫ ∞
0

e−t
2y β

3
2
k

Γ(3
2)
y−

5
2 e−βky

−1
dy

=

(
1 +
|t|
dk

)
e
− |t|
dk .

Therefore, by construction,

w|d d
=

∞∑
k=1

RΓ

(
3

2
,

1

4d2
k

)
=⇒ Ew|d(e−t

2w) =

∞∏
k=1

(
1 +
|t|
dk

)
e
− |t|
dk .
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Since the reciprocal gamma distribution is a special case of the GIG1 distribution, it follows that

w|d d
=

∞∑
k=1

GIG

(
−3

2
,

1√
2dk

, 0

)
. (3)

2.2 The General P-IG(d,c) Class

We construct the general class of P-IG distributions, P-IG(d, c), by exponentially tilting the P-

IG(d, 0) class. The exponential tilting strategy – similar to the one used by Polson et al. (2013) –

allows a second parameter c ∈ R to inform a priori the precision of the P-IG random variable.

Definition 2.2. The P-IG(d, c) distribution is constructed as an exponential tilting of the P-IG(d, 0)

density, defined by

p (ω | d, c) =
exp

(
− c2

2 ω
)
p (ω | d, 0)

Eω

[
exp

(
− c2

2 ω
)] . (4)

The normalizing constant, namely Eω
[
exp

(
− c2

2 ω
)]

, can be calculated using the Laplace transform

identity in (1) which defines the P-IG distribution. The Laplace transform is given by

Ew(e−t
2w) =

∞∏
k=1

(
dk +

√
t2 + c2/2

dk + c/
√

2

)
e
−
√
t2+c2/2
dk e

c/
√
2

dk . (5)

Our main result, presented in Theorem 1, is that a a random variable ω ∼P-IG(d, c) may be

constructed from an infinite sum of independent GIG-distributed random variables. The power of

the result lies in the ability to identify previously unknown conditional posterior distributions in

Bayesian inference and provide simulation strategies based on Generalized Gamma Convolutions

(GGC) (Bondesson, 1992).

Theorem 1. The P-IG(d, c) class of distributions can be constructed as an infinite sum of generalized inverse

1The reciprocal gamma (RΓ) is a special case of the three-parameter generalized inverse Gaussian distribution,
GIG(ν, δ, γ), with density function

p (x) =
(γ/δ)ν

2Kν(δγ)
xν−1 exp

{
−1

2

(
δ2x−1 + γ2x

)}
, x > 0.

Here Kν(·) is a modified Bessel function of the second kind.
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Gaussian (GIG) distributions as follows

P-IG (d, c)
D
=
∞∑
k=1

GIG

(
−3

2
,

1√
2dk

, |c|
)
.

Proof. It suffices to show that Laplace transform of a Yk ∼ GIG
(
−3

2 ,
1√
2dk

, |c|
)

random variable is

given by

E(e−t
2Yk) =

(
dk +

√
t2 + c2/2

dk + c/
√

2

)
e
−
√
t2+c2/2
dk e

c/
√
2

dk .

The density of Yk given by

pdk,c(y) = m (k, c) y−
5
2 exp

(
− 1

4d2
ky
− c2

2
y

)
.

with normalizing constant,

m(k, c) =
1

Γ
(

3
2

) (2dk)
−3

c/
√

2d−1
k + 1

ecd
−1
k /
√

2.

The Laplace transform follows by the algebraic calculation,

∫ ∞
0

e−t
2ypdk,c(y)dy = m(k, c)

∫ ∞
0

y−
5
2 exp

(
− 1

4d2
k

y−1 − (t2 + c2/2)y

)
dy =

m(k, c)

m
(
k,
√
t2 + c2/2

)
=

(
√
t2 + c2/2d−1

k + 1) exp
(√

t2 + c2/2d−1
k

)
(c/
√

2d−1
k + 1) exp(c/

√
2d−1

k )

=

(
dk +

√
t2 + c2/2

dk + c/
√

2

)
e
−
√
t2+c2/2
dk e

c/
√
2

dk .

as required.

Remark 2. The popular Pólya Gamma distribution (Polson et al., 2013) with parameter b > 0 and c ∈ R,

denoted as X ∼ PG(b, c), is defined as an infinite convolution of gamma distributions. Because the gamma

distribution is a special case of the GIG distribution, the PG(b, c) distribution can be represented as an infinite
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convolution of GIG distributions,

ω
D
=

1

2π2

∞∑
k=1

Gamma (b, 1)

(k − 1/2)2 + c2/(4π2)

D
=
∞∑
k=1

Gamma
(
b,
(
2π2(k − 1/2)2 + c2/2

)−1
)

ω
D
=

∞∑
k=1

GIG

(
b, 0,

√
2

2π2(k − 1/2)2 + c2/2

)
.

Thus, the PG(b, c) distribution is closely related to the P-IG distribution class through the infinite convolution

if GIG distributions.

Remark 3. Gamma function ratios appear in full conditional distributions in Bayesian nonparametric mix-

ture models (Ferguson, 1973; Antoniak, 1974). For example, the distribution for the number of clusters in

the Dirichlet Process mixture model, denoted k, depends on concentration parameter α and the number of

observations n,

p (k | α, n) =

(
n

k

)
n!αk

Γ (α)

Γ (α+ n)
. (6)

The ratio of gamma functions in 6 may be represented with the Beta function,

Γ (λ)

Γ (λ+ α)
=

(λ+ α)Beta (λ+ 1, α)

λΓ (α)
. (7)

Combining the likelihood in 6 and the Beta representation in 7 with a gamma prior p (α) enables conditional

posterior sampling of concentration parameter α as a mixture of two gamma distributions. See Section 6 of

Escobar and West (1995).

2.3 Exponential Reciprocal Gamma (E-RG) Models

The Exponential reciprocal Gamma (E-RG) distribution is constructed to provide a data aug-

mentation strategy for reciprocal gamma functions, since its Laplace transform is given by a ratio

of Gamma functions,

Eω|a

[
e−ωt

2
]

=
Γ (a)

Γ (a+ t)
, t > 0. (8)

We write ω D
= E-RG (a) for a > 0. To show that this falls into the P-IG class, use the Hadamard-
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Weierstrass factorization of the reciprocal Gamma function, see Roynette and Yor (2005), p 1265.

Γ(a)

Γ (a+ t)
= e−ψ(a)t

∞∏
k=0

(
1 +

t

a+ k

)
e−

t
a+k , (9)

where ψ(a) is the digamma function. Hence an equivalent definition of the E-RG Laplace transform

is

Eω|a

[
e−ωt

2
]

= e−ψ(a)t
∞∏
k=0

(
1 +

t

a+ k

)
e−

t
a+k . (10)

Recall that the Hadamard factorization of P-IG(d, 0) with dk = k in Remark 1,

e−γt

Γ(t+ 1)
=
∞∏
k=1

(
1 +

t

k

)
e−

t
k , (11)

coincides with (10) when a = 1 and ψ(1) = −γ. Hence, the exponential reciprocal gamma E-RG(1)

distribution is a special case of the Pólya-inverse gamma distribution with the sequence dk = k,

P-IG((1, 2, 3, . . .) , 0).

Hartman (1976) and Roynette and Yor (2005) discuss the scale mixture of normals representa-

tion of Γ (a) /Γ (a+ t) = Ew|a

[
e−ωt

2
]
. This is related to the Laplace transform identity in (11).

3 Inferring concentration parameters in multinomial-Dirichlet models

In this section, we develop Markov chain Monte Carlo (MCMC) algorithms for fully Bayesian

inference of the concentration parameter vector in the Dirichlet distribution. Such inference prob-

lems commonly arise in applied analyses of categorical data. Section 3.1 presents the general hier-

archical multinomial-Dirichlet model class for which the P-IG data augmentation scheme may be

utilized. Section 3.2 develops a parameter expanded Gibbs sampler for inferring the concentration

parameter in the Dirichlet distribution.

3.1 A hierarchical multinomial-Dirichlet model class

The multinomial-Dirichlet framework presented herein is closely related to the latent Dirichlet

allocation model of Blei et al. (2003) for topic modeling in text data, and we use text analysis as a

motivating context. Suppose that for documentm ∈ {1, . . . ,M}, each ofNm words in the document

is independently allocated to K topics conditional on probability vector pm = (pm1, pm2, . . . , pmK).
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For each document m, the number of words allocated to each topic, nm = (nm1, · · · , nmK), is mod-

eled with a multinomial distribution. The sampling model for the count vector nm is then a multi-

nomial distribution given probability vector pm,

nm | pm ∼Multinomial (pm) . (12)

The probability vector pm is the proportional allocation of each document to the K topics. In a

Bayesian analysis, the probability vector for each document pm is typically assigned a Dirichlet

distribution with concentration parameter vector α = (α1, . . . , αK),

pm | α ∼ Dirichlet (α) . (13)

Rather than fixing α =
(

1
K , . . . ,

1
K

)
, as is common, we complete the model with a prior distri-

bution p(α). This hierarchical prior distribution for α facilitates more efficient information sharing

across documents (observational units), and it yields practical advantages for out-of-sample predic-

tion, which we discuss below. The model framework and P-IG augmentation admit independent

uniform, truncated normal, and exponential prior distributions for the elements αk. Although ref-

erence priors p(αk) ∝ 1 and exponential priors yield tractable full conditional distributions in the

Gibbs sampler, we find in numerical experiments that they do not provide sufficient regularization

for posterior convergence and advise against using them. Section 3.2 presents analyses based on

independent truncated normal priors p(α) =
∏K
k=1 p(αk).

In application, model inferences are often summarized by the posterior predictive distribu-

tion for the topic proportion vector p∗ in a new document. Computing the posterior predictive

distribution p (p∗|n1, . . . ,nM ) =
∫
α p (p∗ | α) p(α | n1, . . . ,nM )dα requires posterior computation

of p (α | n1, . . . ,nM ) ∝
∏M
m=1 p (nm | α) p (α); however, when the probability vectors pm are inte-

grated out of the multinomial likelihood, the marginal likelihood p (nm | α) includes elements of α

inside the gamma function,

p (nm | α) =
Γ
(∑K

k=1 αk

)
Γ
[∑K

k=1 (nk + αk)
] K∏
k=1

Γ (nk + αk)

Γ (αk)
. (14)

Because α is nested inside the gamma function, computing p(α | n1, . . . ,nM ) is a challenge. Pre-

vious inference strategies relied on approximations, but in Section 3.2 we introduce a new data
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augmentation scheme for computing the full posterior p (α | n1, . . . ,nM ).

3.2 Data augmentation strategies with P-IG auxiliary variables

The parameter expanded Gibbs sampler presented below introduces two auxiliary random

variables,wmk and ηm, to represent the gamma function with scale mixtures of normal distributions.

Auxiliary variables wmk and ηm in the scale mixture representation are iteratively conditioned on

and then updated as part of the inference strategy for α.

Assume independent prior distributions for each element of vectorα so that p (α) =
∏K
k=1 p(αk).

Note that truncated normal priors on each αk give closed-form full conditional distributions in a

Gibbs sampler, which is proven below. When αk ∼ TN(0, τ2)I(αk > 0), where TN denotes the

truncated normal distribution, the expectation E[αk] =
√

2
π τ . We can set E[αk] = 1

K , a standard

choice for the Dirichlet concentration parameter, by choosing τ = 1
K

√
π
2 . The important takeaway

is that when the prior variance for the truncated normal depends on the dimension of the Dirichlet

distribution, K, the expectation of αk becomes a function of K as well.

Theorem 2. The Gibbs sampler for data augmented multinomial-Dirichlet models is given by

ηm | α,p ∼ Γ

(
K∑
k=1

αk + nm•, 1

)
, ∀m = 1, · · · ,M

wmk | α,p ∼ P-IG
(
d,
√

2(nmk + αk − 1)2
)
, dk = k, ∀i = 1, · · · ,K

pm | α ∼ Dirichlet (nm1 + α1, · · · , nmK + αK)

αk | η,w ∼ TN
(
b

2a
,

1

2a

)
I(αk > 0)

(15)

where the value of a and b depend on the prior on αk. Denote the truncated normal which truncates at αk > 0

by TN(·, ·)I(αk > 0). Under the truncated normal prior p (αk) ∼ N(0, τ2)I(αk > 0),

a =
M∑
m=1

wmk +
1

2τ2

b =

[
−2

M∑
m=1

(nmk − 1)wmk +
M∑
m=1

log ηm +Mγ +
M∑
m=1

log pmk

]
.

An essential aspect of this augmentation strategy is that all of these distributions are straightforward to

simulate from.
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Proof. Suppose the data is {nmk}m=1···M,k=1···K . Let nm• =
∑K

k=1 nmk and n•k =
∑M

m=1 nmk. The

likelihood nm | pm and posterior pm | nm for the probability vector pm underlying observation nm

are given by

p (nm | pm) ∝ pnm1
m1 · · · p

nmK
mK

p (pm | α,nm) ∝
Γ
(∑K

k=1 αk + nm•

)
∏K
k=1 Γ (nmk + αk)

K∏
k=1

pnmk+αk−1
mk

= Γ

(
K∑
k=1

αk + nm•

)
K∏
k=1

[
1

Γ(nmk + αk)
pnmk+αk−1
mk

]

= Γ

(
K∑
k=1

αk + nm•

)
K∏
k=1

[
1

Γ(nmk + αk)
e−γ(nmk+αk−1)e(γ+log pmk)(nmk+αk−1)

]

=

∫ ∞
0

η
∑K
k=1 αk+nm•−1

m e−ηmdηm

K∏
k=1

∫ ∞
0

e−(nmk+αk−1)2wmkp(wmk)dwmk

×
K∏
k=1

e(γ+log pmk)(nmk+αk−1).

(16)

Observe two points in 16: (i) the integral identity Γ
(∑K

k=1 αk + nm•

)
=
∫∞

0 η
∑K
k=1 αk+nm•−1

m e−ηmdηm

introduces an auxiliary random variable ηm ∼ Gamma
(∑K

k=1 αk + nm•, 1
)

; and (ii) the integral

identity e−γ(nmk+αk−1)

Γ(nmk+αk) =
∫∞

0 e−(nmk+αk−1)2wmkp(wmk)dwmk is the Laplace transform of the E-RG

distribution in Section 2.3, which is related to the Hadamard factorization of the P-IG(d, 0) distribu-

tion. This second integral identity introduces another auxiliary random variable wmk ∼ P-IG(d, 0)

(see Remark 1 and Equations 10 and 11 for the Hadamard factorization of the E-RG distribution).

The joint posterior for p1, . . . , pM is then

p (p1, · · · ,pM | α,n) ∝ p (pm | α,n) · · · p (pM | α,n)× p (α)

∝
M∏
m=1

{
Γ

(
K∑
k=1

αk + nm•

)
K∏
k=1

[
1

Γ ((nmk + αk − 1) + 1)
e−γ(nmk+αk−1)e(γ+log pmk)(nmk+αk−1)

]}

=

M∏
m=1

{∫ ∞
0

η
∑K

k=1 αk+nm•−1
m e−ηmdηm

K∏
k=1

∫ ∞
0

e−(nmk+αk−1)2wmkp (wmk) dwmk

K∏
k=1

e(γ+log pmk)(nmk+αk−1)

}
p (α) .

This leads to the posterior augmented by w and η

p (α,w,η | p1, · · · ,pM ) =

M∏
m=1

{
η
∑K

k=1 αk+nm•−1
m e−ηm

K∏
k=1

e−(nmk+αk−1)2wmkp (wmk)

K∏
k=1

e(γ+log pmk)(nmk+αk−1)

}
p (α) .
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Conditional on η and w, the distribution of α is then

p (α | η,w) ∝ exp {log p(α,w,η | p1, · · · ,pM )}

∝ exp

{
M∑
m=1

(
K∑
k=1

αk + nm• − 1

)
log ηm −

M∑
m=1

K∑
k=1

(nmk + αk − 1)
2
wmk +

M∑
m=1

K∑
k=1

(γ + log pmk) (nmk + αk − 1)

}
p (α)

∝ exp

{
M∑
m=1

K∑
k=1

αk log ηm −
M∑
m=1

K∑
k=1

(nmk + αk − 1)
2
wmk +

M∑
m=1

K∑
k=1

(γ + log pmk) (nmk + αk − 1)

}
p (α)

∝ exp

{
K∑
k=1

αk

(
M∑
m=1

log ηm

)
−

K∑
k=1

(
M∑
m=1

(nmk + αk − 1)2wmk

)
+

K∑
k=1

(
M∑
m=1

(γ + log pmk)(nmk + αk − 1)

)}
p (α) .

Therefore the conditional posterior of each αk is

p (αk | η,ω)

∝ exp

{
αk

(
M∑
m=1

log ηm

)
−

(
M∑
m=1

(nmk + αk − 1)
2
wmk

)
+

(
M∑
m=1

(γ + log pmk) (nmk + αk − 1)

)}
p (αk)

∝ exp

{
αk

(
M∑
m=1

log ηm

)
−

M∑
m=1

(
α2
kwmk + 2αk (nmk − 1)wmk + αk (γ + log pmk)

)}
p (αk)

∝ exp

{
−

(
M∑
m=1

wmk

)
α2
k +

[
−2

M∑
m=1

(nmk − 1)wmk +

M∑
m=1

log ηm +Mγ +

M∑
m=1

log pmk

]
αk

}
p (αk) .

The form of posterior p (αk | η,ω) depends on prior p (αk). Under the normal prior p (αk) ∼
N
(
0, τ2

)
I(αk > 0),

p (αk | η,ω) ∝ exp

{
−

(
M∑
m=1

wmk

)
α2
k +

[
−2

M∑
m=1

(nmk − 1)wmk +

M∑
m=1

log ηm +Mγ +

M∑
m=1

log pmk

]
αk

}

× exp

(
− α2

k

2τ2

)
I(αk > 0)

:= exp
(
−aα2

k + bαk
)
I(αk > 0)

∝ exp

(
−
(
αk − b

2a

)2
1/a

)
I(αk > 0) = TN

(
b

2a
,

1

2a

)

where

a =

M∑
m=1

wmk +
1

2τ2

b =

[
−2

M∑
m=1

(nmk − 1)wmk +

M∑
m=1

log ηm +Mγ +

M∑
m=1

log pmk

]
.

The full conditional for p (wmk | α,p) follows from the exponential tilting construction of P-

12



IG(d, c) in Definition 2.2. Starting with the joint posterior distribution p (α,ω,η | p1, . . . , pM ), we

focus on the proportionality including the single element wmk,

p (wmk | α,p) ∝ p (α,ω,η | p1, . . . , pM )

∝ exp
{
− (nmk + αk − 1)2wmk

}
p (wmk) .

(17)

Since the prior distribution for the auxiliary variable wmk is P-IG(d, 0), Equation 17 and Definition

2.2 imply that wmk | α,p ∼ P-IG
(
d,
√

2(nmk + αk − 1)2
)

.

An MCMC algorithm for the special case when α is homogeneous (e.g., α1 = α2 = . . . = αK)

is presented in Appendix A.

4 Shape Inference of Gamma

The gamma distribution, parameterized by shape α and rate β, is a component of many

probability models in Bayesian analysis. For instance, a gamma prior distribution for the preci-

sion parameter in Gaussian linear models is quite common. In fact, Normal-gamma distributions

are workhorse models for shrinkage estimation in regression problems (Griffin and Brown, 2010).

While a gamma prior distribution for a parameter is common, it is less common to model hyperpa-

rameters of the gamma distribution itself as random variables – particularly the shape parameter, α.

Posterior inference of the gamma shape parameter is a long-standing problem in Bayesian analysis

(Damsleth, 1975; Damien et al., 1995; Rossell et al., 2009; Miller, 2018). Although posterior inference

of the rate parameter is straightforward – since the gamma distribution itself is a conjugate prior

for the rate parameter – there is no conjugate prior for the gamma shape parameter, and efficient

posterior computation remains an open problem. In this section, we represent of the reciprocal

gamma function in the Ga(α, β) density as a scale mixture of normals and utilize the P-IG data

augmentation scheme to build an efficient MCMC algorithm.

Suppose y1, . . . , yn are independent and identically distributed observations modeled by a

Ga(α, β) distribution. For observation yi, the likelihood is

p (yi | α, β) =
βα

Γ (α)
yα−1
i e−βyi . (18)

13



A natural prior for α is given by

p (α | a, b, c) ∝ aα−1βcα

Γ (α)b
,where α > 0

and a, b, c are given hyperparameters. Therefore, given data (y1, y2, ..., yn), the posterior distribution

of α is

p (α|a, b, c, β, y) ∝ aα−1βcα

Γ (α)b

n∏
i=1

βα

Γ (α)
yα−1
i e−βyi ∝ 1

Γ (α)b
′

(
β′y
)α
, (19)

with updated hyperparameters a′ = a
∏n
i=1 yi, b

′ = b + n, c′ = c + n, and β′y = a′βc
′
. We define

α̃ = α− 1 and reparameterize the right side of (19) with the goal of matching the E-RG structure in

(10) and (11), which will facilitate posterior computation via P-IG data augmentation.

1

Γ (α)b
′

(
β′y
)α

=
e−γb

′α̃

(Γ (α̃+ 1))b
′ e
γb′α̃

(
β′y
)α̃+1

=

(
e−γα̃

Γ (α̃+ 1)

)b′
eγb
′α̃
(
β′y
)α̃+1

.

When b′ is a nonnegative integer, we are able to introduce b′ auxiliary i.i.d P-IG(d, 0) random vari-

ables, w = (w1, . . . , wb′), to represent
(

e−γα̃

Γ(α̃+1)

)b′
as a scale mixture of normals. The scale mixture

representation appears in the product of the Laplace transforms of each auxiliary wj , as in (20 - 21).

1

Γ (α)b
′

(
β′y
)α ∝ Ew [e−(∑b′

j=1 wj

)
α̃2
]
e(γb

′+log β′y)α̃ (20)

=

∫ ∞
0

e(γb
′+log β′y)α̃e

−
(∑b′

j=1 wj

)
α̃2

p(w)dw1 · · · dwb′ (21)

This leads to a parameter expanded Gibbs sampling strategy with the full conditionals

p (α̃ | w) ∝ e(γb′+log β′y)α̃e
−
(∑b′

j=1 wj

)
α̃2

∼ N
(
µ, σ2

) ∣∣∣
{α̃>−1}

wj | α̃ ∼ P-IG
(
d,
√

2α̃
)
, j = 1, 2, ..., b′,

where dk = k, µ =
γb′+log β′y

2
∑b′
j=1 wj

and σ2 = 1

2
∑b′
j=1 wj

. The truncated normal full conditional α̃ | w ensures

14



that posterior samples of α are strictly positive. This straightforward Gibbs sampler provides a

pathway for fully Bayesian inference in richly structured models of the gamma shape parameter.

Next we show a simple simulation study of gamma shape parameter inference. Suppose the

data are generated from Gamma (3, 2), with 200 observations. Figure 1 presents a histogram of 500

posterior samples, where the solid red line is the theoretical posterior density of α and the dashed

black line is estimated density from posterior samples.
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Figure 1: Posterior of Gamma shape parameter.

5 Application: Opioid and Prescription Drug Crisis

We present an analysis of opioid and prescription drug abuse data to illustrate the applied util-

ity of the data augmentation scheme devised in Section 3. The opioid and prescription drug crisis

continues to destroy lives in many parts of the United States. While the public discussion of the

crisis focuses on opioid abuse, there are multiple drugs contributing to a larger pattern of substance

abuse: cocaine, heroin, methadone, natural & semi-synthetic opioids, psychostimulants, and syn-

thetic opioids. Estimating shared patterns of variation in state-level mortality rates is particularly

important to public health officials. For example, identifying state-level characteristics associated

with higher heroin overdose rates may inform public policy interventions. To estimate the underly-

ing pattern in mortality rates by drug type, we model death counts with the multinomial-Dirichlet

15



framework presented in Section 3. The data in our analysis comes from the VSRR Provisional Drug

Overdose Death Counts, a nationwide data set on mortality statistics from 2015 - 2018. For 19 of

50 states, a break down of deaths by drug type is provided. The underlying overdose rates are not

directly observed, and our inference goal is to learn shared patterns of variation in state-level death

rates by drug type.

State Year Cocaine Synthetic Heroin Methadone Nat. Psych.

CT 2015 118 96 298 58 170 18
CT 2016 171 240 403 72 180 24
CT 2017 250 527 470 67 209 23
CT 2018 280 682 405 97 180 39
MD 2015 109 237 327 150 400 17
MD 2016 154 386 418 179 394 21

Table 1: Deaths by drug type: cocaine, synthetic opioids, heroin, methadone, natural opioids, and
psychostimulants. The data is provided at the state level from 2015 - 2018, and the snapshot pro-
vided above is the first six rows.

Table 1 provides a snapshot of the VSRR data, which reports a count vector for deaths across six

different drug types at the state-year level. Observe in Figure 2 that states exhibit distinct patterns of

variation in empirical death rates. In some states/years, the largest proportion of overdose deaths

is from synthetic opioids, while in others it is heroin. Significant state-year variation in normalized

death counts motivates a hierarchical model for the proportion of deaths due to each drug type.
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Figure 2: Empirical Rates of overdose by drug type.

In this analysis suppose that states and years are exchangeable, so that m ∈ 1, . . . ,M indexes

each individual state-year combination. Let Nm denote the total number of overdose deaths in
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state-year m due to the six drugs under consideration. Let count vector nm denote the number of

deaths associated with each drug type. We model the count vector with a multinomial distribution

conditional on the underlying state-year death proportions,

nm | pm ∼Multinomial (pm) . (22)

Probability vector pm is the latent proportion of overdose deaths in each state-year associated

with each drug type. As observed in Figure 2, variation in pm at the state-year level is substantial,

motivating a statistical model for pm itself. We elicit conditionally independent Dirichlet prior

distributions for each pm,

pm | α ∼ Dirichlet (α) . (23)
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Figure 3: Posterior distributions for the concentration parameters αk|n1, . . . , n76. Columns are pos-
teriors under different prior choices of τ2. The left column corresponds to the choice of τ such
that E[αk] = 1

3K ; the middle column E[αk] = 1
2K ; and the right column E[αk] = 1

K . Each row
corresponds to the posterior αk for one type of drug.

This hierarchical formulation enables the proportion of deaths associated with drug types to
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vary significantly from one state-year to the next. The objective is to predict the proportion of

deaths in a new state, p∗, associated with each drug type. The full posterior predictive distribution

for p∗ | n1, . . . , nM quantifies (with uncertainty) the relative proportion of abuse-related deaths by

drug type at the aggregate level.

Following the algorithmic development in Theorem 2, we elicit truncated normal priors for

α with different expectations E[αk] and compare the inferences (see Figure 3). Recall that when

αk ∼ TN(0, τ2)I(αk > 0), the prior expectation is E[αk] =
√

2
π τ . Observe in Figure 3 that as prior

variance τ2 increases (with the smallest τ2 in the left column), posterior estimates of α increase in

magnitude, reflecting the larger prior mean. The posteriors become more diffuse as well, which

reflects the increased prior variance. We also see in Figure 3 that the posterior distributions for the

concentration parameters associated with heroin, natural opiods, and synthetic opiods are relatively

larger than the concentration parameters for cocaine, methadone, and psychostimulants. As the

expected value of the concentration parameter increases from 1
3K in the left column of Figure 3 to

1
K in the right column, the separation of the posteriors becomes more pronounced.
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Figure 4: Posterior predictive distribution of p, with normal prior on α. τ = 0.209, 0.104, and 0.0696,
same as Figure 3.
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Computing the posterior for each αk facilitates computation of a posterior predictive distribu-

tion for the proportion of deaths in a new state-year associated with each drug type. Rather than

fixing αk, we estimate the αk and propagate uncertainty in the concentration parameters to predic-

tions about the proportion of deaths attributed to each drug. Figure 4 illustrates that the posterior

predicted proportion of deaths associated with heroin, natural opioids, and synthetic opioids is

again relatively larger than the predictive values for cocaine, methadone, and psychostimulants.

This is particularly true in the right hand column of Figure 4, where the prior mean of each con-

centration parameter is E[αk] = 1
K , the prior specification which places the most predictive mass

in the middle of the unit interval. By contrast, the E[αk] = 1
3K and E[αk] = 1

2K prior choices place

significant predicted mass at the ends of the unit interval. Observe in the left and middle columns

of Figure 4 that the predictive distributions are overly concentrated near zero, while the predictive

distribution in the right column is more evenly spread along the unit interval.

6 Discussion

The Pólya-inverse Gamma distribution facilitates fully Bayesian posterior inference for con-

centration and shape parameters in Dirichlet and gamma statistical models, respectively. The P-IG

distribution class is flexible and admits fast and efficient stochastic simulation methods in widely-

used statistical models, such as latent Dirichlet allocation, Gamma-Gamma hierarchical models,

and Bayesian nonparametric mixture models. The P-IG(d, c) distribution is constructed from an

infinite convolution of GIG distributions and includes the E-RG distribution as a special case. It

is the E-RG case that relates ratios of gamma functions to the Laplace transform of the P-IG dis-

tribution class, providing an efficient data augmentation strategy. Our parameter expanded Gibbs

sampler leverages the scale mixture of normals representation of the E-RG distribution to estimate

parameters nested in the gamma function.

The focus of the current paper is on theoretical and algorithmic development of the P-IG dis-

tribution class. Our work builds on distributional results of Hartman (1976) and Roynette and

Yor (2005) and contributes to the literature on scale mixtures of normals (see, e.g., Andrews and

Mallows (1974); West (1987); Polson et al. (2013)). We believe that the computational strategies

developed here will provide the foundation for new and richly structured hierarchical models of

Dirichlet concentration and gamma shape parameters. Applied Bayesian analyses of categorical

data will benefit from increased model flexibility and information borrowing strategies.
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There are a number of avenues for future research. In particular, regularized scale allocation

models can be implemented using P-IG and E-RG distributions using data augmentation methods

of Polson and Scott (2013). Barndorff-Nielsen et al. (1992) provide multivariate GIG distribution

theory and relationships with Poisson processes.
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A MCMC for the case of homogeneous α

Under the special case α1 = α2 = · · · = αK = α. Need to learn α,

e−γα

Γ (α+ 1)
=
∞∏
k=1

(
1 +

α

k

)
e−

α
k (24)

From Roynette and Yor (2005) (IV 59)

Γ (λ)

Γ (λ+ α)
= e−αψ(λ)

∞∏
k=1

(
1 +

α

λ+ k − 1

)
e−

α
λ+k−1 (25)

By definition of PIG

E[e−α
2w] =

Γ(λ)

Γ(λ+ α)
eαψ(λ), (26)

where w ∼ PIG (d, 0) and dk = λ+ k − 1. Let n =
∑K

k=1 nk.

Theorem 3. The Gibbs sampler for homogeneous α model is given by

η | α,p ∼ Γ(Kα+ n, 1)

wk | α,p ∼ PIG(d,
√

2(nk + α− 1)2), dk = k

p | α ∼ Dir(n1 + α, · · · , nK + α)

α | η,w ∼ TN
(
b

2a
,

1

2a

)
I(αk > 0)

where the value of a and b depend on form of prior p(α), TN for truncated normal with αk > 0. Truncated

Normal prior p(α) ∼ N(0, τ2)I(αk > 0),

a =

K∑
k=1

wk +
1

2τ2

b = −2
∑
i

(nk − 1)wk +K log η +
∑
i

(γ + log pk).
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Proof. Bayes rule requires the conditionals

f(n | p) ∝ pn1
1 · · · p

nK
K

p(p, α | n) ∝ Γ(Kα+ n)∏K
k=1 Γ(nk + α)

K∏
k=1

pnk+α−1
k

= Γ(Kα+ n)

K∏
k=1

[
1

Γ(nk + α)
pnk+α−1
k

]

= Γ(Kα+ n)
K∏
k=1

[
1

Γ((nk + α− 1) + 1)
e−γ(nk+α−1)e(γ+log pk)(nk+α−1)

]

=

∫ ∞
0

ηKα+n−1e−ηdη

K∏
k=1

∫ ∞
0

e−(nk+α−1)2wkp(wk)dwk

K∏
k=1

e(γ+log pk)(nk+α−1)

=

∫
p(α,w, η | p)dηdw

Therefore, the augmented conditional posterior is

p(α,w, η | p) = ηKα+n−1e−η
K∏
k=1

e−(nk+α−1)2wkp(wk)
K∏
k=1

e(γ+log pk)(nk+α−1)p(α)

Conditional on η and w, distribution of α

p(α | η,w) ∼ exp

(
αK log η −

∑
i

(nk + α− 1)2wk +
∑
i

(γ + log pk)(nk + α− 1)

)
p(α)

∼ exp

(
−

(∑
i

wk

)
α2 +

(
−2
∑
i

(nk − 1)wk +K log η +
∑
i

(γ + log pk)

)
α

)
p(α)

:= exp(−aα2 + bα)

∝ exp

(
−
(
α− b

2a

)2
1/a

)

Truncated Normal prior p(α) ∼ N(0, τ2)I(αk > 0),

a =

K∑
k=1

wk +
1

2τ2

b = −2
∑
i

(nk − 1)wk +K log η +
∑
i

(γ + log pk).

which is a normal distribution with mean b/2a and variance 1/2a.
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